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Abstract 
The basic unit of mica polytypes has monoclinic 
symmetry and the layer stagger is a submultiple of the 
periodicity along the a axis. Because of these features, 
more than one suitable axial setting can be chosen for 
non-orthogonal micas. Three types of axial settings are 
introduced and shown to be useful for classifying non- 
orthogonal polytypes of micas and indexing their 
diffraction patterns. Standard setting is the axial setting 
of a polytype leading to the shortest projection of the c 
axis onto the (001) plane. Basic axial setting is the 
standard setting of a polytype with a number N of 
layers equal to an integral multiple of 3". All the 
polytypes having the same basic axial setting belong to 
the same Series. Fixed-angle setting is the axial setting of 
a general polytype showing the same angle as the 
corresponding basic axial setting. The total layer stagger 
of stacking classifies polytypes into two Classes: their c 
axis is inclined towards respectively the shortest (Class 
a) or the longest (Class b) of the two orthohexagonal 
axes in the plane of the layer. Each Class is further 
divided according to N = 1 (mod3) (Subclass1) and 
N = 2 ( m o d 3 )  (Subclass 2). By expressing N as 
3"(3K + L), the two integers n and L (1 or 2) establish 
the Series and the Subclass, respectively. This definition 
allows an effective classification of the polytypes and a 
systematic approach to the indexing of diffraction 
patterns, independently of their complexity, which 
increases with N. The transformation rules between 
settings are given and examples are discussed. 

1. Introduction 

Approaches using numeric representations (Ross et al., 
1966; Takeda & Sadanaga, 1969; Zvyagin, 1962, 1967, 
1974; Zvyagin et al., 1979; Dornberger-Schiff, Backhaus 
& I)urovi~, 1982; Dornberger-Schiff, Durovi~ & 
Zvyagin, 1982; Backhaus & Durovifi, 1984; I)urovi~ et 
al., 1984; Weiss & Wiewi6ra, 1986; Zhukhlistov et aL, 
1990; Takeda & Ross, 1995), vector schemes (Smith & 
Yoder, 1956; Takruchi & Haga, 1971) or both 
(Dekeyser & Amelinckx, 1953; Thompson, 1981) have 
been introduced to describe mica polytypes, whose 
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features derive from the stacking in a complex way of a 
simple unit layer (Hendricks & Jefferson, 1939). Mica 
polytypes exhibit local symmetry higher than that 
shown by their space group and unit-cell translations 
(Sadanaga & Takeda, 1968). 

The choice of the axial setting represents an impor- 
tant step in comparing calculated and experimental 
patterns, especially when the number of layers in- 
creases. Different axial settings have been used in the 
literature; in some cases, the projection of the c axis 
onto the (001) plane was kept constant, in others, it was 
the monoclinic angle, and in others neither was kept. 
Furthermore, examples can be traced where a mix of 
different axial settings is used to index different reci- 
procal-lattice planes of the same polytype or where the 
setting of a polytype is used to index the pattern of a 
different polytype (Ross et al., 1966; polytypes 3T, 3A1, 
4M1, 4M2, 4M3, 4A8).t In the present work, the axial 
settings for mica polytypes are for the first time defined 
in a systematic way and the transformation rules 
between them are given. This is the first treatment 
leading to a completely general approach to the 
problem of the choice of mica axial settings. It might 
also be used as the starting point for similar general- 
izations in cases of other phyllosilicates, which share 
many geometrical features with micas. 

In the following, we shall constantly refer to the 
space-fixed orthohexagonal reference introduced by 
Zvyagin (1962). However, different structure-related 
axial settings will be introduced in both direct and 
reciprocal space. The relation with Zwagin's setting will 
be kept by means of the transformation matrices, which 
will be given according to Hahn (1983) and Arnold 
(1983): covariant and contravariant quantities written 
as row and column matrices, respectively. According to 
Hahn (1983), bold letters (e.g. a, b, c) indicate vectors, 
while their lengths are written as standard italic letters 
(e.g. a, b, c); axes are also written as standard italic 
letters. 

t According to the suggestions of the IUCr A d  Hoc Committee on 
the Nomenclature of Polytypes (Guinier et al., 1984), the lattice 
symbol for triclinic polytypes should be changed from Tc to A 
(anorthic). The polytype called 4A1 in Ross et aL (1966) has been 
called 4A8 in Takeda & Ross (1995) and vice versa. 
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Table 1. Metrical relations in orthohexagonal and monoclinic settings 

Orthohexagonal setting Monoclinic setting 

b = a x 3 a/2 
/a, x/a / 

b* 1/b b* = a*/31/2 b = a x 31/2 a* = 1/a sin fl* 
b* = 1/b 

c* 1/c c* = 1/c sin fl* 

b* = a* sin fl*/31/2 

2. Unit layer 

The ideal mica unit layer is built up by sandwiching an 
octahedral (O) sheet with symmetry P(3)lm [notation 
after Dornberger-Schiff (1959); details in Merlino 
(1990)] between two tetrahedral (7) sheets with 
symmetry P(6)mm,  which is reduced to P(3)lm by the 
so-called ditrigonal rotation within the tetrahedral sheet 
(Radoslovich, 1959; Radoslovich & Norrish, 1962; 
Takeda & Sadanaga, 1969). The two T sheets show a 
relative shift of a/3 so that the resulting layer symmetry 
is finally C12/m(1)  (Pabst, 1955). Rare cases of non- 
centrosymmetric layers (e.g. Brown, 1978) are neglected 
in this paper. The symmetry of the single layer structure 
(1M polytype) is C2/m,  b-unique setting. Two adjacent 
T sheets belonging to different layers are always exactly 
facing each other in the ideal structure [P(6)mm 
symmetry of the tetrahedral sheets]. 

Neglecting small deviations from ideality, all mica 
polytypes are based on a hexagonal plane lattice [(001) 
plane], while in three dimensions they are metrically at 
least monoclinic.i- The ideal mica lattice can thus be 
monoclinic, orthorhombic or trigonal and hexagonal: in 
the plane of the layer, two hexagonal axes al and a2 can 
be chosen but the axial setting based on them is useful 
only in dealing with trigonal and hexagonal polytypes. 
A C-centred unit cell, based on orthohexagonal a and b 
axes (orthohexagonal metric: b = a × 31/2, F = rr/2) 
and with the shortest c axis, displays the complete 
symmetry of the layer. This is the cell most commonly 
used to describe the 1M polytype and it is called the 
conventional cell according to Burzlaff et al. (1983). The 
reduction algorithm to the reduced cell is well known. 
Here the orthohexagonal a and b axes, corresponding 
to the cell called C1 in Arnold (1983), is adopted. 
Finally, for all mica polytypes, a multiple (ideally) 
orthohexagonal cell can always be chosen whose axes 
will be kept coincident with those of Zvyagin's space- 
fixed reference. For non-orthogonal N-layer polytypes, 
it can be obtained by stacking three N-layer repeats. 
The metrical relations in direct and reciprocal space, in 
both the orthohexagonal and monoclinic settings, are 
given in Table 1. If c' is the vertical axis of the ortho- 
hexagonal sextuple cell and c that of the monoclinic 
cell, keeping unchanged the orientation of the axes in 

t The mica real-plane lattice is pseudohexagonal. The effect of the 
deviation from ideal geometry in phyllosilicates has been studied in 
detail for kaolin minerals (Zvyagin & Drits, 1996) and seems to 
influence the formation of different polytypes. 

the plane of the layer, the transformation between 
monoclinic and orthogonal C1 setting is as follows: 

(a b c ' ) l - I = ( a  b c), 

r I =  1 , 

0 g_j 

V = V ' /3 ,  

a b c ) l - I - a = ( a  b Ct ), 

[J 1 0 1 

1-I -1 = 0 1 0 , 

0 0 3 

V' = 3V. 

(1) 

3. Classification of polytypes 

An N-layer mica polytype is built by stacking N layers 
with a rotation between successive layers that is an 
integral multiple of 60 ° (Smith & Yoder, 1956). 
Geometrical features of mica polytypes can be simply 
expressed with the aid of two parameters (notation 
from Zvyagin, 1997): cn, which is the projection of the c 
axis on (001), and Co, which is the projection of the c 
axis on the c* axis. The projection cn, after subtraction 
of integers, can always be reduced to one of three 
possible values (0, 0), ( i /3,  0) or (0, i /3)  (Zvyagin, 
1967). In the first case, a metrically orthogonal polytype 
is obtained with c -- Co; the smallest cell based on the 
orthohexagonal axes coincides with the orthohexagonal 
sextuple cell introduced above and is thus a double 
C-centred cell. For trigonal and hexagonal polytypes, 
the choice of a primitive hexagonal cell is always 
possible. The other two cases correspond to non- 
orthogonal metrically monoclinic polytypes, which can 
be classified as follows: (i) polytypes with the c axis 
inclined towards the a axis of the space-fixed reference: 
these polytypes are grouped under the name Class a 
(b-unique setting); (ii) polytypes with the c axis inclined 
towards the b axis of the space-fixed reference: these 
polytypes are grouped under the name Class b 
(a-unique setting). This classification is not simply a 
matter of names but corresponds to different values of 
the projection cn, which is a geometrical feature of non- 
orthogonal polytypes. The proposed two Classes replace 
the previous definition of 1M type and 2M2 type 
(Takeda & Sadanaga, 1969), which is too restrictive, 
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Table 2. Metrical relations in direct and reciprocal space 
for both Classes 

Class a Class b 

D i r e c t  s p a c e  c cos /5  = --a/3 c cos  a = - b / 3  
R e c i p r o c a l  s p a c e  a* cos /5"  = c*/3 b* cos  ct* = c*/3 

because it includes also the definition of the monoclinic 
angle for all polytypes with N # 3K (K > 0, integer). 
The metrical relations characterizing these two Classes, 
with respect to the space-fixed reference, are given in 
Table 2. For polytypes with N and N' layers, the 
following formulae hold (Zvyagin, 1967): 

Class a Class b 

tan/5 N = (N/N')tan~N, t a n a  N -- (N/N')tanaN,.  

(2) 

In a monoclinic metric, analogous relations hold also 
for the corresponding angles in the reciprocal space. 

As shown by Takeda & Sadanaga (1969), when 
N -- 3K the choice of the axial setting is geometrically 
limited. For a better understanding of these limitations, 
it is useful to express the number of layers contained in 
a repeat unit of each polytype in terms of the powers of 
3. The set of positive integers as a function of the 
powers of 3 assumes the expression: 

N = 3 " ( 3 K + L )  ( n > 0 ,  L = l o r 2 ) .  (3) 

In (3), three characteristic integers are used: n, L and K. 
It will be shown that n characterizes polytypes that can 
be based on an axial setting with constant monoclinic 
angle, whereas L characterizes the transformation rule 
between different axial settings. Therefore, the 
following definitions a r e  introduced: Series, which 
corresponds to the number n; and Subclass, which 
corresponds to the number L. The two Subclasses 1 and 
2 are correspondingly defined. For each Series, K = 0 of 
Subclass 1 determines the axial setting of the first 
polytype of the Series. This axial setting is called the 
basic axial setting and on it, for each polytype of the 
Series, an axial setting always having the same mono- 
clinic angle can be built. 

4. Axial settings 

The basal nodes of the C lattice are described by the 
vector (p/2, q/2), where p and q are coprime integers of 
the same parity. In the case of non-orthogonal mica 
polytypes, % = a/3 or b/3. Therefore, the c~ projection 
of any c" vector defining C cells of constant volume for 
those polytypes is obtained adding (p/2, q/2) to ( i /3 ,  0) 
or (0, i /3) .  Using the metrical relation between a and b 

" is obtained as axes (b = a x 31/2), the modulus of c n 
follows: 

c",/a = [p2/4 + 3q2/4 - (3p - 1)/9] 1/2 

c'~/b = [p2/12 + q2/4 - (3q - 1)/9] l/2 

for Class a and Class b polytypes, respectively. 

(4) 

4.1. Class a 

The monoclinic axial setting of Class a having 
c n = a/3 corresponds to the conventional cell: it will be 
called the Standard setting (aS). The alternative setting 
will be any other possible C-centred setting. Labelling 
aSN the standard setting common to all the polytypes 
with the same number of layers, the basic axial setting 
for all Class a polytypes with N # 0 (mod 3) is labelled 
a s  1. 

4.2. Class b 

In the case of Class b polytypes, the definition of 
axial settings is a little different. In (1), matrices FI and 
I-I -1 have the (13) and (23) elements exchanged 
because the c axis is inclined towards b and not a. The 
corresponding transformation: 

a b c ' ) F l = ( a  b c), oo] 
r I =  1 ½ , 

a b c ) I - l - l = ( a  b c'), E  oo] 1-I -1 = 0 1 1 , 

0 0 3 

V - -  V'/3, 

( la)  

V' -- 3V 

leads to an a-unique monoclinic setting. It is common 
practice to exchange a and b axes (Smith & Yoder, 
1956), reverting to a b-unique monoclinic setting. The 
a-unique setting will be called Class b Transitional 
setting (bT) and, by analogy with Class a, the Standard 
setting (bs) will be that deriving from the axial 
exchange. The bT ~ bs transformation involves the 
exchanges a ~ - b ,  b ~ - a ,  and c ~ - c  in order to 
resume to a right-handed setting with non-acute /5 
angle, so that this axial transformation is accomplished 
by the matrix 

(5) 
0] 

V =  0 0 , 
- -  

0 1 ~T~s 

which is an orthogonal matrix, i.e. a real and symmetric 
matrix whose inverse coincides with the matrix itself: 
V = V -1. All the other possible settings with the same 
(a, b) basis, are grouped under the definition of alter- 
native settings. 



MASSIMO NESPOLO, HIROSHI  TAKEDA AND GIOVANNI F E R R A R I S  351 

In the case of Class b polytypes, there is no l-layer 
polytype and the basic axial setting is defined by 
analogy with Class a (Fig. 1). Having already defined aS1 
setting, its relation to as2 can be derived taking into 
account that %(2) = cn(1) and Co(2 ) -- 2Co(1): 

(a b C)~Sl = (a  EI0 I b C)os2 i 0 

o 

(a) El 0 ll(a ) b* = i 0 b* , 

c* as1 0 2 c* as2 

(6) 

i.e. the Standard setting of the simplest polytype 
belonging to this Class (2M2 polytype) is obtained from 
the Ca setting through matrices FI and V, defined in ( la)  
and (5). The basic axial setting for Class b (labelled bsa) 
is obtained by changing the superscript a into b in (6). 
The axis a* of bs1 contains the 201 reciprocal-lattice 
point (indexing i n  bs2). The geometrical definition of 
the basic axial settings for the two Classes is exactly the 
same. Taking into account that Co is the same both in bSa 
and in asa, while cn is - b / 3  in bsa but - a / 3  in aSa, the 
value of the monoclinic angle of bsa is approximately 
107 ° . 

4.3. Fixed-angle setting for Class a 

The particular alternative setting based on aS1, i.e. 
having the same monoclinic angle but c(N) = Nc(1), is 
defined as the Fixed-angle setting (aFu). For a 1M 
polytype: asa ------ a F  a. In Fig. 2, the (h0/) plane of aS is 
shown. The actual values of a*, c* and r* depend on the 
polytype. 

Remembering the metrical relations for Class a in 
reciprocal space (Table 2), the projections on the c* axis 

of the vectors r* = ha* + kb* + lc* are (3l 4- 2)c*/3 so 
that an integral multiple of c* is never obtained. The a* 
axis of the Fixed-angle setting passes on +20l  (aS 
indexing), where the value of l depends on N. Labelling 
ofl~ the angle between the c* and a* axes of the Fixed- 
angle setting of an N-layer polytype, the following 
relationship holds: 

tan fl*u(h = 4-2) -- [(3l q- 2)/2] tan °fl* u. (7) 

Now, putting N ' =  1 in the reciprocal-space equation 
corresponding to (2) for Class a polytypes, since by 
definition fl~' = ofl~ = off,N, gives 

tan° • = ~U (1/U) tan fl~v. (8) 

Comparison of (8) and (7) gives N = (3l 4-2)/2. The 
possible solutions are those leading to integral values of 
l, i.e: 

h = 2 : l = 2 K + 2  (for N = 3K + 2); 
(9) 

h = 2 : l = 2 K  (for N = 3K + 1). 

No solution can be found for N = 3K. Therefore, if and 
only if N ¢ 3K, the aF setting can be used. The general 
transformation rule between aS and aF settings can be 
obtained by requiring that a* of aF contains the node 
hOl with 

h = 2(--1)L-1; l =  2(K + L -  1). (10) 

For polytypes belonging to Subclass 1 or 2, the +a* 
semi-axis of aF is respectively in the same or the 
opposite half-plane containing the +a* semi-axis of the 
aS. It follows that for Subclass 2 polytypes aSu is 
obtained from the basic axial setting (aS1, which coin- 
cides with aFa and is the basis for obtaining aFN), 
changing sign to a and b and taking c ( N ) =  
(3K + 2)c 1 + (K + 1)a. For Subclass 1, instead, a and b 

e(~s 2) 
c(Os,) . /  

oW -'w" i 

/ .  .... ~ ,',("s,) 

j.-" i 
f - !  

f! ..-- -: 

b(%) ~ ~ b(-s~) / i y  

a(%) 

Fig. 1. Geometrical definition of basic axial setting for Class a 
polytypes starting from the Standard setting of the 2-layer polytype 
(2M1). By exchanging a and b axes, the same procedure converts 
the Standard setting of the 2M2 polytype into the basic axial setting 
for Class b polytypes. 

4c*/3 
. . . . . . . . . . . . . .  ~o5 

11:/3 
. . . . . . . . . . . . . .  ~204 

8c'/3 
- ~o3 

;c~/3 a* . . . . . . . . . . . . . .  202 

2cJ/3 

Fig. 2. Definition of Fixed-angle setting for multilayer polytypes. The 
(h0/) plane of the aS setting is shown, limited to h = 0, -t-2 and l 
from 0 to 5. The projection of reciprocal-lattice nodes on the c* axis 
never corresponds to an integral multiple of the period along c*. 

205 

OO5 

204 ........... fi~d 

O04q 
203 . . . . . . . . . . .  1-0~/3 

003~ 
202 . . . . . . . . . . . . . .  

7c~/3 

002 q 

2oi . . . . . . . . . . .  ~e"d 

ooi 
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remain  unchanged and c(N) = (3K + 1)c I + Ka. In this 
way, we resume a c,  projection of - a / 3  (a/3 along + a  
of aSa setting for Subclass 2, and along - a  of the same 
setting for Subclass 1). The "F setting is based on aSa but 
its Co is the same as in ~SN setting. Therefore,  the matrix 
t ransforming the "S into aF does not depend on N. The 
general  expression for the t ransformat ion matrices of 
both Subclasses, as a function of K and L, is 

[ ( - - 1 !  L - t  0 ( - 1 ) L ( K + L - 1 ) ]  
EL = (--1) L-1 0 • 

0 1 

(11) 

It should be noted that  E 1 ~ E11 and E 2 = E21. The 
matrices accomplishing the t ransformations f rom the 
or thohexagonal  space fixed reference are 1-" L -- H E L. 

4.4. Fixed-angle setting for Class b 

The Fixed-angle setting for this Class, b E is built on 
bs1 by taking N times the period along c. As  for Class a, 
bF is not  possible for polytypes with a number  of layers 
N that  is an integral multiple of three. Starting f rom bs, 
the general  features  of Class b polytypes are the same 
as those of Class a. In fact, Fig. 2 and equations (7)-(10) 
apply also to Class b if a* < b* is assumed. Fur thermore ,  
since the geometrical  definition of the basic axial setting 
is the same for both Classes, following the above 
procedure,  identical t ransformat ion matrices are 
obtained. However ,  the following two facts should be 
kept  in mind: (i) aS always has a and b axes coincident 
with those of the space-fixed setting [equation (1)]; (ii) 
in Class b, the setting having a and b coincident with 
those of the space-fixed setting, is the a-unique setting 
bT, while the b-unique bs setting is obtained f rom bT 
through application of the V matrix. The matr ix 
accomplishing the direct t ransformat ion from bT to bF is 

v E L = V E  L 

0 (-1) L 0 1 
= ( - 1 )  L 0 ( - 1 ) L - 1 ( K 4 - L - 1 )  , (12) 

0 0 

while for the inverse t ransformat ion the matrix is 
Y E L l =  EL1V. The overall t ransformat ion f rom the 
or thohexagonal  Cz setting is obtained through the 
matrices VF L = I I V E  L and the correspondent  inverse 
ones. 

4.5. Axial settings for 3K-layer polytypes 

The length of cn for Subclass L in the fixed-angle 
setting can be calculated f rom (4), in which 

• p = ( - 1 ) L 2 ( K + L - 1 )  and q = 0  (Class a) or p = 0  
and q = ( -1) '~2(K + L - 1) (Class b). The result is (a 

Table 3. Basic and Fixed-angle axial settings for N-layer 
polytypes 

Basic axial Fixed-angle 
Number of layers setting setting c, 
3K+l 3 0 (mod 3) (a;b)s 1 (a;b)F - -  
3K+2 2 x 3 0 (mod 3) (";b)sz (a;b)]F + 
9K+3 31 (mod 3 2) (a;b)s 3 (3'a;3'b)F --  
9K+6 2x31 (mod 32) (an)S 3 (3'a;3'b)F + 
2 7 K + 9  3 2 (mod 33) (a;b)s 9 (9'a;9'b)F - -  

2 7 K + 1 8  2 x 32 (mod 33) • (a;b)s 9 (9"a;9'b)F + 
8 1 K + 2 7  33 (rood 34) (a;b)s27 (27"a;27'b)F - -  
81K+54 2 x33 (mod 3 4) (a;b)827 (27'a;27'b)F + 

or b according to the Class): 

% = ( - K -  L/3)(a, b) = - ( 3 K  4. L)(a, b)/3, (13) 

where a and b are the lengths of the axes of the space- 
fixed setting. The projection cn is thus translationally 
equivalent  to -t-1/3 along a or b, where minus and plus 
signs are respectively for Subclass 1 and 2. For N = 3K, 
the Fixed-angle setting cannot  be used [equation (9)]; in 
fact it would have c, = - K ( a , b ) ,  translationally 
equivalent  to (0, 0). This value is not possible for the 
non-or thogonal  polytypes. However  (Fig. 3), the Stan- 
dard setting of a polytype with 3" layers ( 3 n ' a s  a n d  3"'bs) 
can be used as basic axial setting for polytypes with a 
number  of layers that  is a multiple of 3", but different 
f rom 3 n+m or multiple (m > 0), exactly in the same way 
as the l - layer  based setting can be used as basic axial 
setting for Class a polytypes with N 7~ 3. The resulting 
fixed-angle settings are labelled 3"'aF and 3"'bF, respec- 
tively for Class a and Class b. In this way, the number  of 

ft7.a;27~) 
F 

! I ~ / ~  ~ ~ ~ ~ ~ ' ' : b ~ t ( a ; )  

30 I I  • f I : , ~  t l  I . . . .  I t  I , ' I l I ! l • , ~ I • , / , , , f  , ~ , L f 

2~ , , ~ i  I I , I f , I I I i , ~ I 

• ! 1 I ! ~ ; ! ~ ] : t ! ! : I I ! ; i i I 

I ' * ~ ' .  ] ; ~ i : ~ * * ! I I  t , I  : f i i i t ' !  " 

q ~ } V ~ i } i } } i ) i } } } }  1}I}} i } ! } l } } }  
3°.Basic J -  + 0 - + 0 - + 0 - +0 +0 +0 +0 + +0 +0 + 

Fig. 3. Definition of Fixed-angle setting for N-layer polytypes. 
Ordinate: the number of layers. Abscissa: the component of e~ 
(along a or b of the space-fixed reference, depending on the Class), 
expressed as - ,  4- and 0. The thick lines represent the c axes of the 
Fixed-angle settings indicated by the corresponding labels. The 
intersection of a line parallel to the abscissa with c gives the 
reduced component of ~. When this value is zero, the 
corresponding basic axial setting cannot be used to build a Fixed- 
angle setting. Note especially settings of polytypes with 
N = 0 (mod 3) 
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Table 4. Example o f  polytype classification according to K, Series and Subclass 

Series 0 Series 1 Series 2 Series 3 S--+F 
Transformation 

K Subclass Number of layers Number of layers Number of layers Number of layers matrix 

0 1 1 3 9 27 E1 
0 2 2 6 18 54 U, 2 
1 1 4 12 36 108 U,1 
1 2 5 15 45 135 ~---d 2 
2 1 7 21 63 189 U, 1 
2 2 8 24 72 216 I.~ 2 
3 1 10 30 90 270 ,% 
3 2 11 33 99 297 U,2 
4 1 13 39 117 351 U,1 
4 2 14 42 126 378 U,2 

Fixed-angle (a~')F (3'a;a'b)F (9'a;9'b)F (27'a;27"b)17 

setting 

Table 5. Cell parameters in different axial setting for two polytypes (example) 

The parameters have been calculated assuming ideal parameters for the 1M polytype as a = 5.2, b = 9.0, c = 10 ,~,/3 = 100 °. Projection c,, is 
given making reference to the a and b axes of CI setting. 

Polytype Setting cn a (.4,) b (,~) c(.4,) t~ (o) /3 (°) a" (~-1) b* (.~-1) c" (,~-1) a" (°) t3 ° (°) 

8 layers, C1 (_0, 0) 5.2 9.0 236.4 90 90 0.192 0.111 0.00423 90 90 
Class a aS (1/3, 0) 5.2 9.0 78.8 90 91.3 0.192 0.111 0.0127 90 88.7 

aF (8/3, 0) 5.2 9.0 80.0 90 100 0.195 0.111 0.0127 90 80 
11 layers, C1 (0, {)) 5.2 9.0 325.1 90 90 0.192 0.111 0.00308 90 90 

Class b bT (0, i/3) 5.2 9.0 108.4 91.6 90 0.192 0.111 0.00923 88.4 90 
bs (0, i/3) 9.0 5.2 108.4 90 91.6 0.111 0.192 0.00923 90 88.4 
bF (0, 11/3) 9.0 5.2 113.3 90 107.0 0.111 0.201 0.00923 90 73.0 

possible Fixed-angle settings is kep t  at a min imum 
(Table 3). 

4.6. Axial transformations 

The consequences of (3) and related definitions can 
be summarized as follows. The integer  n determines  the 
basic axial sett ing common to all polytypes of the 
corresponding Series, while the Subclass defines the 
direction of the a* axis of the Fixed-angle setting with 
respect to that  of the Standard  setting. All polytypes 
belonging to a given Series can be indexed in their  own 
Standard  sett ing and in the Fixed-angle sett ing obta ined 
by mult iplying by N/3"  the per iod along c of the 
corresponding basic axial setting. The t ransformat ion  
matrices be tween the Standard  and the Fixed-angle 
sett ing depend on the Subclass L and on K. The general  
t ransformat ion rule can be obta ined by taking into 
account the relat ion be tween the monoclinic  angles of 
polytypes in (2). For each Class, the t ransformat ion 
depends  just on the number  N of layers in the polytype 
and on the Subclass. If N represents  the number  of 
layers of a general  polytype and N'  the number  of layers 
of the polytype defining the corresponding basic axial 
setting, by definition, N = 3 " ( 3 K + L )  and N ' =  3" 
hold. Therefore,  the ratio 

N / N ' =  3"(3K + L)/3" = 3K + L (14) 

is completely  independen t  of the Series. Polytypes 
belonging to the same Subclass and with the same value 
of K t ransform from the Standard  sett ing to the 
respective Fixed-angle sett ing exactly in the same way, 
by means  of the same matr ix  (see Table 4). This result  is 
also independen t  of the Class (if one starts f rom the 
s tandard,  and not the t ransi t ional  sett ing of Class b), 
since the special features defining a Class are conta ined 
in the axial parameters  and not in the t r a n s f o r m a t i o n  
rules. A n  example of classification is given in Table 4. 
Cell parameters  in the above in t roduced settings are 
shown in Table 5 for an 8-layer Class a polytype and an 
l l - layer  Class b polytype. 

5. Discussion and conclusions 

Mica polytypes can be divided into or thogonal  and non- 
or thogonal  groups. In the case of or thogonal  polytypes, 

(a,b) (3 n a'3 n b) • the s tandard ( S) and fixed-angle ( " ' F) settings 
coincide; therefore,  c coincides with co, % = (0, 0) and 
the choice of the axial sett ing is simple. However ,  in the 
case of or thogonal  polytypes and of Class b polytypes, 
addit ional  checks on the space or ienta t ion have to be 
considered,  since there  are respectively six and three 
or ientat ions leading to the same project ion c,, (Zvyagin,  
1967). This addit ional  check is accomplished by taking 
into account the symmetry  t ransformat ion rules among 
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Table 6. Features o f  the axial settings for  N-layer  mica po ly types  

a(°S) = a(bT) = a("F) = a(C1); a(bS) = a(bF) = b(C1); b("S) = b(bT) = b("F) = b(C1); b(bS) = b(bF) = a(Ca). 

Orthogonal settingl- aS setting/bS setting bT setting ~F setting bF setting 

e. = (0, 0) % = (--1/3, 0) c.n = (0, --1/3) ¢.(U) = (-U/3,  O) %(N) = ( -N/3 ,  O) 

c(N)/c(N') = N/N' c(U)/c(U') = Usinflu/U' sinfl N, c(U)/c(N') = Nsinau/U' sinct u, c(U)/c(N') = N/N' c(N)/c(N') = N/N' 
0t = fl = 90 ° 0t u = 90 ° tana u = -3co(N)/b ot u = 90 ° otu = 90 ° 

tanflN = -3co(N)/a fin = 90° fin = filM tan flN = ½ tan flzM2 

1" Based on orthohexagonal axes. 

Z symbols (Zvyagin, 1974). In the case of non-orthog- 
onal polytypes, the choice of the axial setting is of 
critical importance,  especially when the number  of 
layers increases. The initial t ransformat ion f rom the C1 
setting is accomplished by matr ix FI, leading to as [Class 
a: equat ion (1)] or bT [Class b: equat ion ( la)]  settings; a 
and b axes of these two settings always coincide with 
those of the space-fixed reference. In the other  settings, 
these axes can have the same or opposite orientat ion 
with respect to the space-fixed reference,  depending on 
the number  of layers, but  the Fixed-angle setting for 
both Classes has the same monoclinic angle as the basic 
axial setting. The general  features are summarized in 
Table 6. In all cases, for two general  polytypes with N 
and N'  layers, co(N) /co(N '  ) = N / N ' .  Therefore,  in the 
(a'°)S settings, the length cn is fixed and the monoclinic 
angle changes with the number  of layers. The opposite 
is true in the (3n'a;3n'b)F settings. 

The (a'b)S settings co_rrespond to the conventional  cell 
and to a projection e,,(1/3, 0), i.e. the minimal value for 
all non-or thogonal  polytypes. These settings have thus 
often been chosen when describing micas (see, for 
example, Hendr icks  & Jefferson, 1939; Peacock & 
Ferguson,  1943; Smith & Yoder,  1956). However ,  the 
( 3 n ' a ; 3 n ' b ) F  settings can be singled out using just the Class 
and the number  of layers, and the t ransformations 
towards the other  possible settings are straightforward.  
For this reason, they have some advantages over (~'b)S, 
especially when dealing with the reciprocal lattice. 

Let  the period along c* for 1M polytype be c~ (it is 
about  0.1 A-~) .  The diffraction pat tern  of an N-layer  
mica polytype shows N spots along any reciprocal- 
lattice row parallel to c* within the c~ repeat .  Some of 
these spots are ideally absent: they correspond to the 
additional reflection conditions (as defined in H a h n  & 
Vos, 1983), which can be interpreted in terms of non- 
characteristic crystallographic orbits (Engel  et al., 1984) 
and by means of the O D  theory (Dornberger-Schiff ,  
1966). However ,  especially in the case of dioctahedral  
micas (Takeda & Ross, 1995), where the deviations 
f rom the ideal geometry  are larger, the additional 
reflection conditions are violated and the corresponding 
spots can appear ,  al though with a weak intensity. 
Because of the large number  of reflections, the choice 
of the correct axial setting is not s traightforward,  at 

least with two-dimensional  pat terns containing the c* 
axis. In this case, since, for each Class and N, (3"'a;3"'b)F 
settings are known a priori ,  they are suggested to be, at 
least initially, used. 

5.1. Appl ica t ions  

5.1.1.4M3 poly type .  As an example of application of 
the diffraction pat tern  interpretat ion based on the 
settings presented in this paper ,  the case of the 4M3 
polytype, belonging to Class a, Subclass 1, and 
described by Z symbols 3531 and RTW symbols 22225- 
is discussed. This polytype was identified by means  of 
oblique-texture electron diffraction (Zhukhlis tov et al., 
1990). These authors made  reference to the orthohex- 
agonal setting, having a repeat  of 12 layers along the c 
axis, in which the reflection conditions are given in the 
synthetic expression 

k = 3n " 112 = 12n + 4; k ~ 3n " 112 ~ 4n + 2, 

where 112 means  that  the l index is referred to the 12- 
layer or thohexagonal  unit cell. These synthetic reflec- 
tion conditions have to be interpreted by taking into 
account the condition of integrality of monoclinic l 
indices (los); then, they match the reflection conditions 
calculated (in the same cell) by means  of Zvyagin 's  
functions (Zvyagin,  1967) and shown in the C1 row of 
Table 7. By applying matr ix H [equation (1)], the 
t ransformat ion towards as setting implies (h and k 
unchanged)  

lcl = ho s + 3l.s; /as = ( - h c l  + lG) /3 .  

t Zvyagin's orientation symbols (Z symbols) give the space-fixed 
intralayer and interlayer displacements in phyUosilicates as a sequence 
of six digits (1-6) and three symbols (0, +, -) ,  respectively (Zvyagin 
et al., 1979). However, in the case of micas built by centrosymmetric 
layers, shortened symbols giving the siaace-fixed orientation of 
corresponding layers in a polytype have been introduced (Zhukhlistov 
et al., 1990): they are written as a sequence of N digits 1-6. RTW 
orientation-free symbols (Ross et aL, 1966) are written as a sequence 
of N digits 0, -4-1, 4-2, 3, the jth symbol giving the rotation angle 
between jth and (j + 1)th layers as integer multiple of 60 °. They can 
be obtained as the difference between pairs of Z symbols. It is now 
common practice to include RTW symbols inside square brackets. 
However, this was not stated by the authors in their original paper 
(Ross et al., 1966). 
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Table 7. Distinctive lattice parameters and reflection conditions for 4M3 polytype (Z = 3531; RTW = 2222) (c, is 
referred to a and b axes of  C~ setting) 

a and b are the same as for the 1M polytype in all setting~ In the "F setting, the reflection conditions assume the simplest expression. 

Setting c, /3 (o )  c (.~) a" (.A.-~) 

C~ (0, 0) 90 157.57 0.192 

aS (i/3, 0) 92.5 39.43 0.192 

~F (71/3, 0) 100 40.00 0.195 

Reflection conditions 

k = 0 (mod 3 )  : l ---- [12 - 2(h + k)l (rood 12) 
k ¢ 0 (mod 3) : l # (6 -- 8h) (rood 12) 

k = 0 (rood 3) : l = h (rood 4) 
k # 0 (rood 3) : l # (h + 2) (rood 4) 

k = 0 (mod 3) : l ----- 0 (rood 4) 
k ~ 0 (rood 3) : l ~ 2 (rood 4) 

Taking into account the C-centring condition 
h + k = 0 (mod2) ,  /,s takes the following values (m 
integer): 

k = 0 (mod 3), k even " h =~2m, k = 6m; 

I° s = 4 - 6m (mod 4) -- 4 - 3h (mod 4) = h (mod 4) 

k = 0 (mod3) ,  k odd • h = 2m + 1, k = 6m + 3 ;  

lo s -- 4 - 3 -- 6m (mod 4) = 4 - 3h (mod 4) 

= h (mod 4) 

k # 0 (mod 3):  las :~ 2 -- 3h (mod 4). 

Substituting the four possible h (rood 4) values in the 
last equation, a simpler expression is obtained: 

k # 0 (mod 3)" los # (h + 2) (mod 4) 

and the complete expression is as in the as row of Table 
7. Since this example belongs to Subclass 1 and corre- 
sponds to K = 1 [equation (3)], the transformation into 
the aF setting is accomplished by matrix E I ( K  - -  1) if 
starting from aS setting, or by matrix FI(K = 1), if 
starting from Cx setting. Indices h and k remain again 
unchanged while the relation between las (l G) and lot is 

Ia F = - h  + I° s 

036110/4 
a *  

032/10/8 

"F 028/8/4 

'~1,24/6/0 

~" ,~ "~ 020/6/4 

"0 16/4/0 

a* olv~ " - .  
a s ~" ~. 0 g/2/0 

" ~ " ~ ' - - - - -  4/0/4 " ~" 
""-'-'0--~....._.. ~" 

a *  

C1 
0~4,'8 

040./4 

_ _ _  
0 16/6/g 

020~12 

[60/]* [40/]* [20/]* 

[l° F = ( - 4 h  + Icl)/3 ]. 

C *  
032/12/16 

025/10112 

24/8 024110116 

020/8/12 

0 16/6/g 

1214 0 12/6/12 

O~'4/g 

0 4/2/4 

) Oo r~  

"~-....~.._...... 

" 0  1~4¢0 

O 20/6/4 
,, ~/0o 

,2~/~ _ ' O .  

[gO/]* [40/]* [60/]* 

Fig. 4. (h0/) reciprocal-lattice plane of 43'/3 (Z = 3531; RTW = 2222) 
mica lattice. The scale along c* and a* axes is not the same. 
Indexing: the three numbers represent the l index according to Ca, 
aS and aF, respectively. For 00l, indexing according to both aS and 
aF coincides. 

The complete expression of the reflection conditions in 
the =F setting takes the simplest expression as can be 
seen in the "F row of Table 7. The axial settings for (h0/) 
and (hhl) planes are shown in Figs. 4 and 5, respectively: 
the axes of the (71 setting are fixed, while those of the 
other two settings can be easily found on the basis of 
Table 7. Some more examples, including a detailed 
analysis of the geometrical features of the patterns of 
2-layer polytypes (23/1 and 2M2) are given in Nespolo et 
al. (1997). 

5.1.2. The PID function. The most powerful tool to 
determine the stacking sequences of mica polytypes 
from diffraction patterns is the periodic intensity 
distribution (PID) function S N (Takeda, 1967; Takeda & 
Sadanaga, 1969; Takeda & Ross, 1995), which repre- 
sents the Fourier transform of the stacking sequence. 
The PID is obtained by removing the effect of intensity 
modulation by the Fourier transform of the single layer 
from the structure factor. As shown by Takeda & Ross 
(1995), who adopted the TS unit layers (Takeda & 
Sadanaga, 1969), the Fourier transform of the stacking 
sequence can be computed with only the displacements 
of the TS unit layers in the plane of the layer and 
without any rotational operation with respect to a given 
axial setting. For the most common polytypes (those 

[110]* a 
~ .  F 

[UO]*a_ 

[110]~1 

.o.341I I 
O O/10 

O O 
~26/8 

24/914 0 0 / 6  0 
~22/7 

0 0 / 6  

0 1414 0 

" ~ /2  O 10/3' i.~r0o, o gr2 
0 " "0.. 

offJ~O ~ ' ~ ° " 0 " ~ - ~  
0 - -~T  

0 0/2- 

0 ~oz~ 0 

~I?~ 0 
0 NI$" 12/5/80 ~ / f f  

0 o 
0 . . ~ 0  

24/9112 0 /'~ 0 

C ~ ~34/12 
/14 

0 O 

026/90 
,24/8 4"/10 0 024/9/12 

0 22/8 
/10 

0 0 

0 14/5 0 

,i214 ~¢./6 O 012/5/8 10/4 %.1 
/6 

0 0 

O 2 1 1 O  

~ ~, '2 0 O-Oil/4 

0 ,. ",,. 0 /2 " . - . - ~ . . ~ _ . ~ . . _ . . . . . . . ~  

OT6 ~ O. 

~ i  nr2 O T~.,C~Fzrl o 

0 0 " " -  
0 _ _  0 ", , .  
.=j22/7 ~ .., 

~ ~  O/~ 0 0~-4/'7~ " -. 

[33/]* [22/]* [11/]* [11/]* [22/]* [33/]* 

Fig. 5. (hhl) plane of 4M3 mica lattice. For explanations, see Fig. 4. 
Along reciprocal-lattice rows, h = 4-3 nodes corresponding to non- 
extinguished reflections (one out of four) are indexed, while along 
the other rows nodes corresponding to extinguished reflections 
(one out of four) are indexed. 
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described only by one of the four TS layers), the c axis 
passing through the origin of each layer is displaced 
- a / 3  (Subclass 1) or +a/3 (Subclass 2) for each 
stacking of layers (Takeda & Ross, 1995). The corre- 
sponding axial setting is just the Fixed-angle one. The 
definition of (3n'a;3n'b)F settings presented in this paper 
includes and generalizes the criterion used by Takeda & 
Ross (1995) to all possible polytypes, such as given in 
their Tables 4, 7, 8 and 10. 

Without a common setting, comparisons of the 
observed and calculated PID in principle have to be 
repeated 2N times, by shifting of the origin and inver- 
sion of the sequence. With the (3n'a;3~'b)F settings, the 
symmetry of the PID function can be expressed with 
simpler reflection conditions. 
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